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Abstract: Many image-to-image translation tasks face an inherent problem of asymmetry
in the domains, meaning that one of the domains is scarce—i.e., it contains significantly
less available training data in comparison to the other domain. There are only a few
methods proposed in the literature that tackle the problem of training a CycleGAN in such
an environment. In this paper, we propose a novel method that utilizes pdf (probability
density function) distance-based augmentation of the discriminator network corresponding
to the scarce domain. Namely, the method involves adding examples translated from the
non-scarce domain into the pool of the discriminator corresponding to the scarce domain,
but only those examples for which the assumed Gaussian pdf in VGG19 net feature space is
sufficiently close to the GMM pdf that represents the relevant initial pool in the same feature
space. In experiments on several datasets, the proposed method showed significantly
improved characteristics in comparison with a standard unsupervised CycleGAN, as well
as with Bootstraped SSL CycleGAN, where translated examples are added to the pool of the
discriminator corresponding to the scarce domain, without any discrimination. Moreover,
in the considered scarce scenarios, it also shows competitive results in comparison to fully
supervised image-to-image translation based on the pix2pix method.

Keywords: CycleGAN; domain translation; selective data augmentation; bootstrapping;
pdf distance

MSC: 68T20; 68T05; 68T07; 68U10; 94A08

1. Introduction
Image-to-image (I2I) translation tasks are a key component of many image processing,

computer graphics, and computer vision problems, as well as other similar problems. Some
I2I methods that have been proposed are given in, for example, [1–4] for semantic image
synthesis, [5–8] for image-to-image translation, and [9,10] for image super-resolution. They
consist of constructing the mapping that translates images from one (source) domain to
another (target) domain (or many of these), thus preserving the content of the image while
the style of the image belonging to the first domain is changed to that of the second domain.
The best performances of the I2I translations are obtained in the fully supervised training
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scenario, where in the training phase, all images in the source and the target (scarce) domain
are assumed to be available in pairs (paired images). Those methods were developed first
(see [11] for the pix2pix learning strategy) and are mostly based on conditional Generative
Adversarial Networks (cGANs). However, the method was further developed by [12–14],
whose solutions still failed to capture the complex structural relationships of scenes in
cases when two domains had drastically different views while trying to achieve mapping
through a single translation network. Moreover, despite improvements, the main drawback
of supervised methods is related to the insufficient amount of paired image data that
are available in most real-world I2I translation problems and the high cost of creating
such datasets.

In order to cope with the previously mentioned problem, an unsupervised CycleGAN
I2I method was proposed in [15]. It uses two GANs oriented in opposite directions, i.e.,
from one domain into another, and vice versa. The problem of highly under-constrained
mappings, which are introduced in this approach, was dealt with by introducing a cycle
consistency loss, which forces the mentioned mappings to be as close to bijective as possible.
The method was proved to be very effective for preserving the semantic information of
the data with respect to I2I translations, as well as other domain transfer tasks, such as
the following: image-to-image translation [15], emotion style transfer [16], and speech
enhancement [17]. Nevertheless, all of those mentioned, as well as many other domain
transfer tasks, have inherent domain asymmetry, meaning that one of the domains has
significantly less available training data (noted as scarce domain). There have been few
studies reported in the literature devoted to resolving this problem. In [18], an augmented
cyclic adversarial learning model that enforces the cycle consistency constraint via an
external task-specific model is proposed. Additionally, in [19], the authors add semi-
supervised task-specific attention modules to generate images that are used for improving
performance in a medical image classification task. Recently, in [20], a bootstrapped SSL
CycleGAN architecture was proposed, where the aforementioned problem was overcome
using the following two strategies. Firstly, by using a relatively small percentage of available
labeled training data from the reduced (scarce) domain and a Semi-Supervised Learning
(SSL) approach, the method prevents overfitting of the discriminator belonging to the
reduced domain, which would otherwise occur during initial training iterations due to the
small amount of available training data in the scarce domain. Secondly, after initial learning
guided by the described SSL strategy, additional augmentation of the reduced data domain
is performed by inserting artificially generated training examples into the training poll of
the data discriminator belonging to the scarce domain. Bootstrapped samples are generated
by the neural network that performs the transfer from the fully observable domain to the
scarce domain with its currently trained parameters. Moreover, in [21], the method for
image translation is adapted for an application in which the fully observable image domain
contains additional semantic information (in the form of associated text inputs). This
presence of cross-modal information makes possible a different learning strategy design,
in comparison to our method, which was designed and extensively tested for exclusively
visual inputs. In [22], the fully observable domain has clearly distinguishable object classes,
which correspond to similar categories, enabling fine-grained partitioning of the image
domain into disjoint subsets (modes) for each of the known classes.

The problem of “imbalanced” or asymmetric sample size is also present in the tasks of
training a multi-class classifier with an unequal number of training instances per category,
e.g., in [23–25], where the CycleGAN model is used to compensate for an unequal number of
training instances per category in different classification tasks that are of interest. However,
these types of problems differ from the one investigated in this study.
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In this work, we propose an extension of the methodology given in [20]. Namely,
instead of just adding all of examples that are translated from the fully observable to the
scarce domain (translated images of the training samples from the fully observable domain
that do not have a pair in the scarce domain) and adding them to the training poll of the
data discriminator belonging to the scarce domain, as implemented in [20], we implement
this process selectively, in a more subtle manner. We actually add only those translated
examples whose probability density function (pdf) in some predefined feature space is
sufficiently close, in terms of distances or similarity measures between pdfs of feature
vectors, to the pdf that represents the original pool of discriminator data in the scarce
domain, obtained in the same feature space. To achieve an adequate feature space, we
utilize a pre-trained VGG19 convolutional neural network (CNN) and extract feature maps
from certain network layers [26].

The primary concept of the method proposed in this paper is to expand the pool
of discriminator training samples in the scarce domain by adding translated images of
unpaired samples from the fully observable domain. However, only images translated
from the fully observable domain that have a pdf for their feature vectors (CNN-based
image representations) that closely resembles (in terms of pdf similarity measure) the pdf of
training samples that have already been assigned to the discriminator in the scarce domain
(within the same CNN based feature space) will be included.

For the pdf representing the translated example that has the potential to be added
to the pool of the discriminator of the scarce domain, we assume a multivariate Gaussian
distribution and estimate its mean and covariance using the maximum likelihood (ML)
method. On the other hand, for the pdf that represents the actual data from the discrimina-
tor pool (original images from the scarce domain), we assume a Gaussian mixture model
(GMM) of their CNN-based representations with some small number of components, which
is estimated over the same feature space obtained by the convolutional layers of the VGG19
CNN. Although several GMM similarity measures can be used to compare GMM pdfs, in
this paper, we use one of the computationally most efficient [27–29]. The choice of feature
space is also important. For this purpose, we chose the reshaped tensors representing
convolutional feature maps from the layers of the pretrained VGG19 CNN proposed in [26]
(e.g., see also [30,31]) as image features. The efficiency of this approach has already been
demonstrated in various image recognition tasks, as well as image style transfer tasks
(see [32–34]). Similar to what was done in [20], we use semi-supervised learning (SSL)
on a predefined amount of available paired data to ensure that the generator performing
translation to the scarce domain becomes sufficiently well trained. The initial SSL strategy
that is based on a small set of paired observations allows the discriminator as well as the
generator that are residing in the scarce domain to avoid overfitting and learn necessary
parameters to some extent. After a sufficient number of iterations, the corresponding
generator of the fully observable domain of the CycleGAN is periodically called to translate
additional examples to the scarce domain (first phase of the propose bootstrapping process),
from which some of them are chosen to be added in the training pool of the discriminator of
the scarce domain (second phase), based on the previously mentioned pdf distance criteria.

This paper is organized as follows: In Section 2, we give a brief description of the
baseline CycleGAN, first proposed in [15], as well as the bootstrapped SSL (BTS-SSL) Cy-
cleGAN proposed in [20]. In Section 3, the novel pdf distance-based augmented CycleGAN
for asymmetric image domains (PdfAugCycleGAN further in the text) is proposed and
described. In Section 4, the experimental results and comparisons of the proposed PdfAug-
CycleGAN to the baseline CycleGAN and BTS-SSLCycleGAN, as well as the fully supervised
pix2pix method [11], are presented on several real datasets with varying amounts of data in
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the scarce domain. Finally, in Section 5, we provide the corresponding conclusions. The list
of mathematical symbols is provided in Appendix A.

2. Baseline CycleGAN Methods
In [35], a non-parametric method called a Generative Adversarial Network (GAN) that

learns the true data distribution based on competitive learning of two networks (generator
and discriminator) was presented and has since quickly become ground-breaking in many
applications of machine learning involving generative models. The key ingredient that
underlies the game theoretic nature of the method is the Nash equilibrium, expressed by
the minimax loss of the training procedure given by the following cross-entropy type loss:

min
G

max
D

Ey∼pY(y) ln(D(y)) +Ez∼pZ(z) ln(1− D(G(z))) (1)

Namely, adversarial training consists of the discriminator network D trying to dis-
criminate between the synthetic samples artificially generated by the generator network G
and the ground truth observations y available in the training data. Generator G is trying to
deceive the discriminator by providing synthetic examples that are as similar as possible to
the ground truth.

To perform I2I translation (and other domain transfer tasks), a supervised (using
paired examples) version of the GAN architecture, named conditional GAN (cGAN), was
proposed in [36] and applied to I2I in [11], named the pix2pix method. Namely, in contrast,
conditional GANs learn a mapping from an observed image x and a random noise vector
z to y, i.e., G : (x, z) → y. Adversarial training is similar to the case of GAN, except that
both the discriminator D and the generator G have input (x, z), contrary to the case of an
ordinary GAN network:

min
G

max
D

Ex∼pX(x),y∼pY(y) ln(D(x, y)) +Ex∼pX(x),z∼pZ(z) ln(1− D(x, G(x, z))), (2)

where pX and pY are data distributions that correspond to domains X and Y, respectively,
while pZ is a distribution of the latent variable z (commonly a normal distribution).

Although the pix2pix method showed superior performance in the presence of a large
number of paired examples, in real applications, it is very hard to obtain such a large
amount of labeled data, as this requires significant annotation effort, which is hard to
obtain. The CycleGAN network emerged in [15] in order to perform I2I, as well as style
transfer from one domain into another, without using any supervisor, i.e., paired data
examples. This is done by invoking the cycle consistency loss in the overall loss function
by designing two domain translators or mappers G : X → Y and F : Y → X in mutually
opposite directions, where X and Y denote two image domains, i.e., style transfer domains.
Cycle consistency loss encourages mappings F and G to be as close to a bijection (F and
G are inverse to each other) to a sufficient extent, i.e., by making G(F(y)) ≈ y, as well as
F(G(x)) ≈ x. It defines the diameter of the regions in X that are mapped by G to the same
point y ∈ Y, and in principle, the same for F. If we denote the discriminator networks
corresponding to domains X and Y by DX and DY, respectively, we utilize the following
adversarial costs:

Ladv(G, DY) = Ey∼pY(y)[ln(DY(y))] +Ex∼pX(x)(1− DY(G(x)))

Ladv(F, DX) = Ex∼pX(x)[ln(DX(x))] +Ey∼pY(y)(1− DX(F(y))), (3)

as well as the cycle consistency cost:

Lcycle(G, F) = Ex∼pX(x)∥F(G(x))− x∥l1 +Ey∼pY(y)∥G(F(y))− y∥l1 , (4)
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so that the full optimization cost optimized by the learning strategy of CycleGAN as follows:

L(G, F, DX , DY) = Ladv(G, DY) + Ladv(F, DX) + λcycleLcycle(G, F), (5)

where λcycle > 0 controls the forcing of the cycle consistency.
The basic CycleGAN training procedure is given by the following pseudo-code in

Algorithm 1:

Algorithm 1 CycleGAN training procedure

procedure CYCLEGAN
N—number of iterations; m—minibatch size; η > 0, learning rate; X ∈ X , Y ∈ Y ,
unpaired or unlabeled training sets, such that |X| ≪ |Y|;
Randomly initialize the parameters of the discriminators DX , DY , and generators GX→Y ,
GY→X : θDX , θDY , θGX→Y , θGY→X

for k = 1 to N do
Sample minibatch of unpaired training data {x1, . . . , xm} ⊂ X, {y1, . . . , ym} ⊂ Y

L̂adv(GX→Y, DY) =
1
m ∑m

i=1 ln DY(yi) + 1
m ∑m

i=1 ln
(
1− DY(GX→Y(xi))

)
L̂adv(GY→X , DX) =

1
m ∑m

i=1 ln DX(xi) + 1
m ∑m

i=1 ln
(
1− DX(GY→X(yi))

)
θ
(k+1)
DX

←− θ
(k)
DX
− η∇θDX

L̂adv(GY→X , DX)

θ
(k+1)
DY

←− θ
(k)
DY
− η∇θDY

L̂adv(GX→Y, DY)

θ
(k+1)
GY→X

←− θ
(k)
GY→X

− η∇θGY→X

[
L̂adv(GY→X , DX) + λcyc Lcyc(GX→Y, GY→X)

]
θ
(k+1)
GX→Y

←− θ
(k)
GX→Y

− η∇θGX→Y

[
L̂adv(GX→Y, DY) + λcyc Lcyc(GX→Y, GY→X)

]
end for

end procedure

In the semi-supervised learning (SSL) case, i.e., in the case where there is a limited
amount of paired (labeled) data, the additional SSL cost is added to (5), defined as follows:

LSSL(G, F) =
1
|P| ∑

p∈P
[∥G(xp)− yp∥l1 + ∥F(yp)− xp∥l1 ], (6)

with P denoting set of indices of paired data samples. Thus, the overall cost of SSL
CycleGAN is given as follows:

L(G, F, DX , DY) = Ladv(F, DX) + Ladv(G, DY)

+ λcycleLcycle(G, F) + λSSLLSSL(G, F), (7)

with λSSL > 0 controlling the influence of SSL cost on the overall cost.

Bootstrapped SSL CycleGAN for Asymmetric Domain Transfer

In order to deal with the mutually asymmetric domains, i.e., a problem where one
of the domains involved in the translation task is scarce, meaning that it lacks a sufficient
amount of data, Bootstrapped SSL CycleGAN (BTS-SSLCycleGAN) is proposed in [20].
It utilizes two concepts in addition to the standard CycleGAN. The first is SSL training,
which uses cost (7) and assumes that some number of paired training samples is preventing
overfitting of the discriminator network during the initial iterations of the learning process.
The second concept is a bootstrapping strategy that aims to overcome the difference in
the amount of training data between the scarce and non-scarce domains by artificially
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expanding the amount of the unlabeled training pool of the discriminator DX on the scarce
domain X. This is achieved as follows.

In the initial phase of the training procedure, the parameters of the CycleGAN model
are first optimized for some time using the previously mentioned SSL strategy. After the
initial training of the generator GY→X (i.e., F), and when it is considered “reliable enough”,
it is used as a bootstrapping sampler for data augmentation of the discriminator DX . This is
done by periodically translating a predefined percentage (sampled by uniform distribution)
of available examples from the domain Y to the scarce domain X and adding those to the
pool of the discriminator DX , thus bootstrapping the statistics p̂X(x) of the scarce domain
X, which approximates the ground truth pX(x).

3. Pdf Distance-Based Augmented CycleGAN
In this section, we propose and describe a novel method we call pdf distance-based

augmented CycleGAN (PdfDistCycleGAN). In this approach, we expand on the previous
idea of BTS-SSLCycleGAN by adding to the data pool of the discriminator DX of the scarce
domain X only those translated samples from the domain Y which agree in some way,
which we will specify soon in the text, and to some extent, to the currently estimated pdf
p̂X(x) of the scarce domain X. We do this implicitly by measuring the similarity between
the Gaussian pdf that corresponds to the particular bootstrapping sample translated from
Y to X to the GMM that corresponds to the pool of the discriminator DX in some specified
feature space. We specify the previous information as follows.

3.1. Proposed PdfAugCycleGAN Data Augmentation Process

We utilize the feature maps of the pretrained VGG19 convolutional network VGG19
Net, which is 19 layers deep and trained on the ImageNet database [30,31], to obtain the
feature space in which pdf similarity is measured, i.e., the actual domain of pX . For the trans-
lated example x̂ = F(y), for some particular y ∈ Y, we bring x̂ to the input of the instance of
a pre-trained VGG19 CNN, and we use the obtained feature map tensor T(l),x̂ ∈ Rm(l)×n(l)×d

from some specified l-th feature map level (or more of those). Thus, by vectorizing T(l),x̂,
we obtain the set of d dimensional feature vectors T(l),x̂

vct = { f (l),x̂11 | . . . | f (l),x̂
m(l)n(l)} from which,

by assuming that these are generated by single multivariate Gaussian pdf N (µ(l),x̂, Σ(l),x̂),
by using the ML technique [37,38], we obtain the estimates (µ̂(l),x̂, Σ̂(l),x̂) of these as follows:

µ̂(l),x̂ =
1

m(l)n(l)

m(l)

∑
i=1

n(l)

∑
j=1

f (l),x̂ij

Σ̂(l),x̂ =
1

m(l)n(l) − 1

m(l)

∑
i=1

n(l)

∑
j=1

(
f (l),x̂ij − µ(l),x̂

)(
f (l),x̂ij − µ(l),x̂

)T
(8)

On the other hand, for the pool of existing training samples of the discriminator DX

corresponding to the scarce domain X, we assign the Gaussian mixture pdf:

fDX =
M

∑
i=1

αiN (µxi , Σxi ) +
Madd

∑
j=1

β jN (µx̂add
j

, Σx̂add
j
),

αi, β j ≥ 0,
M

∑
i=1

αi +
Madd

∑
j=1

β j = 1, for all i, j (9)

where M is the number of original image examples xi of the pool corresponding to DX,
while Madd is the number of translated examples x̂add

j = G(yj), which have already been
added to the pool corresponding to DX. Estimates µx̂add

j
and Σx̂add

j
, corresponding to
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previously translated and added bootstrapping image samples x̂j, are obtained using
VGG19 features, as described by (8). The same also holds for original image samples xi

in (9).
In this way, all parameters of single multivariate Gaussian distributions that make

GMM are estimated exclusively from feature vectors of individual image samples. Thus,
on the domain level, Gaussians corresponding to individual image samples are combined
into a Gaussian mixture.

The actual mechanics of obtaining the component weights in GMM are given as
follows. We assign α̃i = α , i = 1 . . . , M, β̃ j = β, j = 1, . . . , Madd, α > β > 0, with:

αi =
α̃i

∑M
i=1 α̃i + ∑Madd

j=1 β̃ j
, i = 1 . . . , M , (10)

β j =
β̃ j

∑M
i=1 α̃i + ∑Madd

j=1 β̃ j
, j = 1, . . . , Madd , (11)

so that the constraints from the Equation (9) in the original manuscript still hold. Thus,
we assign higher weights to the original examples belonging to the scarce domain, as we
consider those to be more significant than the ones that are translated. We use β = 1

2 α.
Another, more sophisticated approach is to weight individual contributions of the

translated examples according to the distance of their corresponding Gaussians to the
currently estimated GMM fDX of the training samples that are already in the training pool
of the discriminator in the scarce domain, which is given by Equation (9) in the original
manuscript. Of course, in this case, we assign equal weights for all examples that are
already in the training pool of the discriminator in the scarce domain X. One possible
solution is given by the following weighting scheme:

αi =
1

2M
, (12)

β j =
1
2

dsim(gj, fDX )

∑Madd
j̃=1

dsim(g j̃, fDX )
, (13)

where dsim(·, ·) denotes utilized GMM similarity measure (see Section 3.3), and gj is the
Gaussian pdf obtained in VGG19 feature space, corresponding to the particular translated
example x̂j ∈ X, where it holds that x̂j = F(yj), yj ∈ Y. Thus, Equation (9) from the original
manuscript still holds, but with more appropriate weight assignment. Nevertheless, in the
experiments that we have conducted, we obtained unnoticeable differences in accuracy
on the tested datasets. Therefore, we have presented only results with the weighting
methodology presented in (10) and (11).

To decide whether or not the translated example x̂j is to be added to the pool of discrim-
inator DX, Figure 1, some particular GMM similarity measure dsim(gj, fDX ) between the
Gaussian N (µx̂j , Σx̂j), corresponding to the translated example x̂j (mixture is then defined
as gj = 1 · N (µx̂j , Σx̂j)), and the mixture fDX , representing the pool of the discriminator
DX , is evaluated, where both mixtures are over the same specified CNN feature space (e.g.,
layer l values after forward pass in VGG19).

The adopted bootstrapping strategy (BTS) is that some predefined percentage P of the
lowest score dsim(gj, fDX ) translated examples, obtained via translation from unpaired ex-
amples yj belonging to the non-scarce domain Y, are added to the pool of discriminator DX

periodically. We note that the parameters of the CNN implementing translation mapping F
are the currently trained parameters, i.e., the parameters trained up to the moment when
the translation of the novel examples into the scarce domain occurs.
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Thus, the pool of discriminator DX is periodically boosted based on newly added
images generated via image translation from the unpaired examples in the fully observable
domain. The translation mapping is performed based on the currently determined parame-
ters of the translation network, but only those translated examples that do not “spoil” the
original distribution pX are added to the pool corresponding to DX, thus preventing the
presence of outliers in the augmentation process. Next, the generator F : Y → X, as well as
the discriminator DX are trained on the augmented pool of the discriminator DX by using
the adversarial cost Ladv(F, DX) from (3), as well as the cycle consistency cost (4) and SSL
cost (7). This update is also made periodically, after the previously described process of
data augmentation of the scarce domain X is finished.

( ) ( )

ˆ ˆ ˆ( ), ( ), ( ),

11{ | | }l l

l x l x l x

vct m n
T f f " "  ( )CNN layer l

( ) ( )l lm n d 

( ) ( )( )l ld m n

ˆ( ),

11

l xf

ˆ ˆ( ), ( ),1 ( , )l x l x

jg   

( , )
Xsim j Dd g f

ˆ ( )x F y

:G X Y

:F Y X

 scarce

domain

| | | |


proposed bootstrapping with pdf

distance based sample selection 

PdfAugCycleGAN

{ }
XD PdfAugX X 

ˆ{ ( ) | {1, , }}PdfAug j j mX x F y j T      

unsupervised semi-supervised, Algorithm 2

candidate sample / image,

translated from domain Y ˆ ˆ( ), ( ),ˆˆ ,l x l x 

( ) ( )ˆ( ), l ll x m n dT  

CycleGAN

training

ˆ ˆ
1 1

( , ) ( , )
add

add add
X i i j j

MM

D i x x j x x
i j

f    
 

    

Augmentation sample selection based on pdf distance :simd

select or reject

based onx̂
simd

Figure 1. Illustration of the proposed PdfAugCycleGAN data augmentation process in Algorithm 2.

3.2. PdfAugCycleGAN Training Procedure

Algorithm 2 begins by performing the SSL strategy, during the first K0 out of N
iterations to avoid overfitting of the discriminator of the scarce domain DX . The previously
described augmentation strategy is then invoked, and it is performed periodically. Here
we formalize the training procedure of the previously proposed PdfAugCycleGAN based on
the following pseudo-code in Algorithm 2.

We note that the proposed mechanism for the selection of new augmented training
samples first preselects only the percent P of translated examples that have pdfs in VGG19
feature space and are the closest ones to the GMM corresponding to the samples already in
the training pool of the discriminator in the scarce domain. Thus, the reported performance
improvement of PdfAugCycleGAN in comparison to the baseline BTS-SSLCycleGAN comes
from the fact that translated examples that can be considered as outliers for the discriminator
training are excluded from the training pool in the case of PdfAugCycleGAN. In contrast, in
baseline BTS-SSLCycleGAN, all samples translated from the fully observable domain are
always included in the scarce domain discriminator training.
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Algorithm 2 PdfAugCycleGAN training

procedure PDFAUGCYCLEGAN

N—number of iterations; K0—number of initial SSL iterations, K0 ≪ N; K—period

of the proposed bootstrapping strategy (BTS) repetition; MSSL = |Pdata|, number of

paired samples in Pdata = {(xp
i , yp

i )|i = 1, . . . , MSSL} = Xp × Yp; mSSL—SSL minibatch

size, mSSL < MSSL; m—minibatch size after initial SSL phase; P ∈ (0, 1), percentage of

unpaired samples translated from Y to X during the BTS minibatch that will be used to

augment the original training pool corresponding to DX ; P controls the number of selected

translated examples with the lowest score dsim(gj, fDX ) of all the translated examples

x̂j = G(yj), which will be added to the training pool of DX ; dsim is a measure of similarity

between GMMs; η > 0, learning rate; Xu ⊂ X, Yu ⊂ Y, unpaired training subsets, while

Xp ⊂ X, Yp ⊂ Y are paired training subsets, such that |Yp| ≪ |Yu|, |Xp| ≪ |Xu|, and

|X| ≪ |Y|;
Randomly initialize the parameters of DX , DY , and GX→Y , GY→X : θDX , θDY , θGX→Y , θGY→X

for k = 1 to N do

Sample minibatch of unpaired training data {x1, . . . , xm} ⊂ Xu, {y1, . . . , ym} ⊂ Yu

Sample minibatch of paired training data {(xp
1 , yp

1 ), . . . , (xp
mSSL , yp

mSSL)} ⊂ Xp ×Yp

L1 = L̂adv(GY→X , DX) + λcyc Lcyc(GX→Y, GY→X) + λSSL L̂SSL(GX→Y, GY→X)

L2 = L̂adv(GX→Y, DY) + λcyc Lcyc(GX→Y, GY→X) + λSSL L̂SSL(GX→Y, GY→X)

θ
(k+1)
DX

←− θ
(k)
DX
− η ∇θDX

L̂adv(GY→X , DX)

θ
(k+1)
DY

←− θ
(k)
DY
− η ∇θDY

L̂adv(GX→Y, DY)

θ
(k+1)
GY→X

←− θ
(k)
GY→X

− η ∇θGY→X
L1

θ
(k+1)
GX→Y

←− θ
(k)
GX→Y

− η ∇θGX→Y
L2

if
(
(k > K0) ∧ (( (k− K0) mod K) == 0)

)
then

Perform the augmentation of the training pool of discriminator DX :

Sort all translated examples x̂j = GY→X(yj), j ∈ {1, . . . , m}, by the increasing

values of dsim(gj, fDX ), so that {x̂j = GY→X(yj)} is sorted in that manner, then

select the first ⌊Tm⌋ that correspond to the percent P of the translated samples

from Yu, i.e., Tm = P|Yu|, and extend the training pool of DX :

XDX ← {X ∪ XPd f Aug}, XPd f Aug = {x̂j = F(yj)|j ∈ {1, . . . , ⌊Tm⌋}}

end if

end for

end procedure

3.3. Measure of Similarity Between GMM Mixtures Used in Data Augmentation Process

The KL divergence, defined as KL(p||q) =
∫
Rd p(x) ln p(x)

q(x) dx, is the most natural
measure between two probability distributions p and q. For the proposed pdf distance
mentioned in the previous section, dsim, we use the GMM similarity measure based on
KL divergence between GMMs. Since it does not exist in closed form, an approximation
based on the closed form expression for KL divergence between corresponding multivariate
Gaussian components can be given by Equation (15).
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Let us denote two GMMs as f = ∑n
i=1 αi fi and g = ∑m

j=1 β jgj, with fi = N (µ fi
, Σ fi

)

and gj = N (µgj , Σgj) representing Gaussian components of the corresponding mixtures,
with weights αi ≥ 0, β j ≥ 0 ∑n

i=1 αi = 1, ∑m
j=1 β j = 1. Terms µ fi

, µgj are means, while
Σ fi

, Σgj are covariance matrices of fi and gj. Then, the KL divergence between two Gaussian
components KL( fi||gj) exists in the closed form given as follows:

KL( fi||gj) = ln
|Σ fi
|

|Σgj |
+ Tr

[
Σ−1

gj
Σ fi

]
+ (µ fi

− µgj)
TΣ−1

gj
(µ fi
− µgj)− d. (14)

Thus, the roughest approximation for KL divergence between GMMs, based on the
convexity of the KL divergence, is given as follows:

KL( f ||g) ≤ KLWA( f ||g) = ∑
i,j

αiβ jKL( fi||gj), (15)

where KL( fi||gj), i = 1, . . . , n, j = 1, . . . , m are given by (14).
For this paper, we use the approximation of the KL divergence between GMMs f and

g based on averaging. Namely, GMMs f and g are replaced with multivariate Gaussians
f̂ = N (µ f̂ , Σ f̂ ) nad ĝ = N (µĝ, Σĝ) with

µ f̂ = ∑
i

αiµ fi

Σ f̂ = ∑
i

αi

(
Σ fi

+ (µ fi
− µ f̂ )(µ fi

− µ f̂ )
T
)

. (16)

and similarly for g and ĝ. Those estimates for f̂ and ĝ obtain minimum KL( f̃ ||g̃), with
f̃ , g̃ in the class of multivariate Gaussians with a predefined dimension. Thus, the KL
divergence between f and g is approximated by KL( f ||g) ≈ KL( f̂ , ĝ), where KL( f̂ , ĝ) is
evaluated using (14).

4. Experimental Results
In this section, we present the experiments obtained on several real-world datasets,

in the problem of image translation: (1) Semantic label ↔ photo task on CityScapes
dataset [11,39]. This dataset consists of 2975 training images of the size 128 × 128, as
well as an evaluation set for testing; (2) Architectural labels↔ photo task [11,40] on the
CMP Facade dataset, containing 400 training images; (3) Map↔ aerial photo task on Google
Maps dataset [11], containing 1096 training images of the size 256× 256.

The experimental setup for all datasets was designed to simulate an imbalanced, i.e.,
scarce domain scenario, where the left or the target domain X in the image translation
task is considered scarce (with significantly less training data in comparison to the source
domain Y). This is achieved using a setup in which only a certain percentage of the original
left domain is used for I2I model training.

Each of the described experiments compares the proposed PdfAugCycleGAN image
translation method against the following baseline methods: (1) original unsupervised
CycleGAN proposed in [15], (2) fully supervised pix2pix method proposed in [11], (3) semi-
supervised BTS-SSLCycleGAN method proposed in [20].

In order to compare the performance over the aforementioned tasks and datasets, we
used Peak Signal-to-Noise Ratio (PSNR), as well as the more advanced Structural Similarity
Index Measure (SSIM), which is a more advanced perception-based model that considers
image degradation as perceived change in image structural information. The PSNR is
evaluated as PSNR = 20log

(
MAXI/

√
MSE

)
, where MAXI is the maximum possible

pixel value of the ground truth images, while MSE is the squared Euclidean norm between
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the generated and ground truth images. The SSIM measure between generated images and
ground truth images is calculated on various windows x, y of an image, as follows:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(17)

where µx and µy are the average values of x and y, while σ2
x and σ2

y are variances and c1

and c2 are constants, set as reported in [41].

4.1. Experimental Setup

Through all experiments (all datasets, all baselines, as well as the proposed method),
we varied the percentage of the data that was considered as available in the scarce domain
in the following steps: 25%, 50%, and 100%.

For the baseline BTS-SSLCycleGAN and the proposed PdfAugCycleGAN, in all experi-
ments, after the initial K0 iterations, during the next k + K training iterations, where K = 50,
the examples from the fully observable (original) domain were transformed by GY→X and
added to the training pool of the discriminator DX to perform the proposed data augmen-
tation strategy (BTS). This periodical bootstrapping of the scarce domain during model
training was done such that 20% of randomly chosen examples (by uniform distribution)
was generated for BTS-SSLCycleGAN in each BTS iteration.

For the proposed PdfAugCycleGAN, in each BTS iteration (on every K iteration of
model training after K0) the fixed percent of 50% (p = 0.5) of examples translated by GY→X

with the lowest dsim(gj, fDX ) score was selected for augmentation of the DX training pool,
where gj, fDX , and dsim are defined in Section 3.3 (these were the percents for which we
obtained the best results). The described bootstrapping procedure was repeated (with
the same rate as in the baseline BTS-SSLCycleGAN method), and new translated samples
were periodically added into the training pool of the scarce domain X during the proposed
CycleGAN model training strategy with sample selection based on pdf distance.

Since all the considered datasets originally contained paired images, we also used a
fixed 20% of paired training examples from the scarce domain for the initial semi-supervised
learning stage of both BTS-SSLCycleGAN and PdfAugCycleGAN. The rest of the available
data in the scarce domain were prepared in such a way that their corresponding pairs from
the original dataset were discarded from the target domain in each of the experiments.
In the asymmetric I2I translation task that was of the most interest for the proposed
data augmentation method (scenario in which the total sample size of the scarce domain
corresponds to only 25% of original paired data), the result of the described setup was that
only a relatively small amount of paired data was available for the SSL stage (5% of the
original dataset), while the remaining 20% of the available (unpaired) data in the scarce
domain were reserved for the investigation of the proposed unsupervised model training
strategy. Through sample selection involving pdf distance computation, Algorithm 2,
the scarce domain was then periodically extended during the PdfAugCycleGAN model
training procedure.

Considering the actual CycleGAN generator network architecture, we used the one
originally proposed in [15] and also utilized in [17], as well as in [20]. It contains two
stride-2 convolutions, several residual blocks, and two fractionally strided convolutions
(stride 1

2 ). It also utilizes six blocks for 128× 128 and nine blocks for 256× 256 and higher-
resolution type images and also instance normalization, as in [15,42,43]. Considering the
discriminator network, we used 70× 70 PatchGAN.

Considering the VGG19 network used in the evaluation of image feature maps and the
construction of corresponding pdfs gj, fDX , on which the computation of the selection score
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dsim(gj, fDX ) is based, we use the standard pretrained VGG19, as described in Section 3.1
(see also [26]).

Considering the training procedure, instead of the loss function in Equation (3), we
used a more stable L2 adversarial loss (as reported in [44]). We also use the history of
50 generated images in order to calculate the average score. For all experiments, we used
λcyc = λSSL = 10, m = mSSL = 50 with a learning rate η = 0.0002, which was kept constant
during the first 100 epochs, linearly decaying to zero during the next 100 epochs. Network
parameters were initialized by using random samples drawn from the normal distribution
N (0, 0.02).

4.2. Result Analysis and Discussion

In Table 1, the experimental results of the proposed PdfAugCycleGAN in comparison
to the baseline pix2pix, CycleGAN, and BTS-SSLCycleGAN are presented in terms of PSNR
and SSIM measures on several databases.

It can be seen that, in the majority of experiments involving unpaired (unsupervised)
or semi-supervised I2I translation tasks, the proposed PdfAugCycleGAN obtained improve-
ments in comparison to the baseline BTS-SSLCycleGAN, as well as the classical CycleGAN
method, in both PSNR as well as SSIM measures. More specifically, in experiments obtained
on CityScapes and Facade datasets, the proposed PdfAugCycleGAN obtained better results in
comparison to all baseline methods, while in experiments on the Google Maps dataset, the
BTS-SSLCycleGAN performed slightly better, i.e., for that particular dataset, the proposed
selective bootstrapping methodology failed to improve the I2I translation results. However,
the proposed PdfAugCycleGAN did achieve better PSNR performance on the particular
dataset in the I2I translation scenario with the smallest sample size of the scarce domain X.

In general, the reported PSNR advantage of PdfAugCycleGAN over BTS-SSLCycleGAN
is always present under the challenging scenario of a small sample size of X (when only
25% of dataset samples was considered as available for the experiment), and even higher in
the case of other I2I tasks and datasets.

Table 1. Experimental comparison between proposed PdfAugCycleGAN and the baseline CycleGAN,
BTS-SSLCycleGAN, and fully supervised pix2pix, under different scenarios: varying sample size SX

of scarce domain X , as well as when applied to different tasks/datasets—CityScapes, Facade dataset,
Google Maps. Bold values indicate better performance among the last two methods.

SX pix2pix CycleGAN BTS-SSLCycleGAN PdfAugCycleGAN

[%] PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CityScapes
25 19.89 0.60 17.20 0.56 18.77 0.61 19.10 0.64
50 20.45 0.64 17.00 0.55 19.04 0.64 19.22 0.67

100 19.51 0.59 17.12 0.54 20.47 0.65 21.23 0.68

Facade dataset
25 13.78 0.35 10.93 0.25 11.83 0.32 12.14 0.34
50 14.24 0.40 11.00 0.25 13.75 0.40 13.92 0.42

100 14.25 0.42 10.98 0.27 13.21 0.41 13.57 0.43

Google Maps
25 30.35 0.67 30.47 0.71 31.20 0.77 30.90 0.76
50 30.55 0.68 29.78 0.72 30.88 0.79 30.21 0.76

100 30.01 0.69 30.24 0.73 31.23 0.81 30.89 0.79

Besides the unfavorable I2I translation scenario with asymmetric sample size, where
PdfAugCycleGAN outperformed the competing BTS-SSL on both CityScapes and Facade
datasets (thanks to the proposed selective approach to data augmentation), in the case
of the same sample size (SX = 100% in Table 1), PdfAugCycleGAN also achieved better
performance in comparison to the fully supervised pix2pix method, which further justifies
the proposed selective BTS strategy.
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Overall, the results in Table 1 confirm that the proposed more subtle handling of
the translated examples, concerning whether those should be added into the pool of the
discriminator DX of the scarce domain, can improve the performance of the augmented
CycleGAN system.

In Figure 2, visual examples are given for the proposed PdfAugCycleGAN vs. baseline
CycleGAN, semi-supervised BTS-SSLCycleGAN, and fully supervised pix2pix algorithm
comparisons for 50% of the scarce domain data used. Real A (fully observable domain)
and Real B (scarce, target domain) correspond to image pair examples. Examples are
shown for Google Maps, CityScapes, and Facade datasets. It can be seen that in these ex-
amples, the proposed PdfAugCycleGAN obtains visually more accurate results than the
baseline methods.

Go
og

le
 M

ap
s

Real A Real B pix2pix CycleGAN SSL+BTS SSL+BTSvgg19

Ci
ty

Sc
ap

es

Real A Real B pix2pix CycleGAN SSL+BTS SSL+BTSvgg19

Fa
ca

de
s

Real A Real B pix2pix CycleGAN SSL+BTS SSL+BTSvgg19

pix2pix vs. CycleGAN vs. SSL+BTS vs. SSL+BTSvgg19 [50% of domain A]

Figure 2. Visual examples are given for the proposed PdfAugCycleGAN vs. baseline textitCycleGAN,
BTS-SSLCycleGAN, and fully supervised pix2pix algorithm comparisons for 50% of the scarce domain
data used. Real A (fully observable domain) and Real B (scarce, target domain) correspond to image
pair examples. Results of PdfAugCycleGAN are denoted by “SSL + BTSvgg19”, and similarly for
BTS-SSLCycleGAN by “SSL + BTS” image labels.

Based on additional analysis of reported values of PSNR [dB] and SSIM in Table 1,
which are shown in Figure 3 we can also observe the following.

The relative gain γ of the proposed PdfAugCycleGAN is consistently positive in com-
parison to competing baseline methods (CycleGAN and BTS-SSLCycleGAN) when measured
over CityScapes and Facade datasets under all training data conditions (25%, 50%, and 100%
of available training data). It is computed as the normalized difference of the performance
metric values:

γ =
ζ(PdfAugCycleGAN)− ζ(baseline)

ζ(baseline)
· 100% , (18)

where ζ(·) denotes either PSNR or SSIM metric, i.e., performance values corresponding to
the proposed PdfAugCycleGAN and selected baseline method of interest.

From the presented results, it is also possible to see that this gain is not significantly
lower in the case of the 25% scenario in comparison to the 50% and 100% experiments in
the case of comparisons with the CycleGAN and BTS-SSLCycleGAN methods. However, in
the case of certain experiments where the evaluation of the proposed method is performed
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over the Google Maps dataset, the obtained relative gain against BTS-SSLCycleGAN was
negative, as shown in Figure 3. The values indicate that the proposed method, for CityScapes
and Facade datasets, provides consistent improvement with respect to BTS-SSLCycleGAN,
including a relative increase of PSNR in the range of 1.2–3.7%, and a relative increase of
SSIM in the range of 4.6–6.2%. Losses are observed for the Google Maps dataset, less than
2.2% for PSNR and less than 3.8% for SSIM. Slightly lower performance metrics on the
Google Maps dataset can be explained by the fact that the proposed augmented model
training is utilizing sample selection that is dependent on VGG19 feature space. This means
that pdf estimation is relying on a feature extraction CNN that is pre-trained on natural
image scenes, which are completely different from the satellite image scenes present in
the Google Maps dataset. Thus, the proposed pdf distance computation is to some extent
dependent on the type of images (scenes) on which the pre-trained feature extraction
network is trained. Therefore, the proposed adaptive augmentation of the scarce domain in
PdfAugCycleGAN is affected by the characteristics of the selected pre-trained feature space
(character of the side information). This leads to better results over CityScapes and Facade
datasets in comparison to Google Maps, which has a different type of scenes (significantly
different from the ones on which VGG19 was trained).
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Figure 3. Relative gain γ of PdfAugCycleGAN against competing baseline methods in terms of:
(a) PSNR, and (b) SSIM measures, which are reported in Table 1. Specific markers (colors) denote
training scenario: 25%, 50%, or 100% of available data; while different line types define dataset type:
CityScapes, Facade dataset, or GoogleMaps.

At the end, we note that other limitations could also come from the choice and type of
the training datasets and methods, e.g., the authors in [21,22] use dataset types which are
problem-specific and significantly different from the ones used in the presented experiments
(presence of cross-modal semantic information or clearly distinguishable classes), as already
discussed in Section 1.

5. Conclusions
In this paper, we have proposed a novel approach for the CycleGAN training strategy

in the case of unfavorable domain translation scenarios in which the original data domain
has a substantially smaller number of samples in comparison to the target data domain. The
method is based on periodical boosting of scarce domain statistics through data augmenta-
tion based on selective sampling of novel data samples generated via domain translation
from the fully observable domain. The described data augmentation and learning are
performed in a fully unsupervised manner, after a short initial semi-supervised stage that
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prevents the overfitting of the discriminator network in the scarce data domain. This
process is periodically repeated throughout the model training process and significantly
improves the overall model performance in comparison to the unsupervised learning
baseline. In comparison to the similar previously proposed semi-supervised learning
strategy, which also relies on data augmentation through transfer of samples from the fully
observable domain, the proposed method achieves selective bootstrapping and thus better
performance in cases when the sample size in the scarce domain is several times smaller
than the number of samples in the fully observable domain.

In addition to the training strategy, this paper also proposes a novel sample selection
criterion based on pdf distance between distributions of feature vectors corresponding to
learned image representations obtained by a pretrained CNN. Thus, the proposed similarity
measure between the specific sample and the pool of existing samples in the system could
also apply to other types of problems involving adaptive sample selection or distance
computation in the learned feature space characteristic for some specific signal modality.

The presented results also confirm that selective or more subtle strategies for data
augmentation could be a key for more efficient model learning in the case of imbalanced
domain translation tasks.
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The following abbreviations are used in this manuscript:

BTS Bootstrapping strategy
BTS-SSL Bootstrapped semi-supervised learning
BTS-SSLCycleGAN BTS-SSL CycleGAN
GAN Generative adversarial network
cGAN Conditional GAN
CNN Convolutional neural network
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CycleGAN Adaptive cycle-consistent GAN
EM Expectation maximization
GMM Gaussian mixture model
I2I Image-to-image domain translation
KL Kullback–Leibler
ML Maximum likelihood method
MSE Mean squared error
pdf Probability density function
PdfDistCycleGAN pdf distance-based augmented CycleGAN
PSNR Peak signal-to-noise ratio
SSL Semi-supervised learning
SSIM Structural similarity index measure

Appendix A
In the following, we provide a list of the main symbols and their descriptions:

x ∈ X sample from the target or “left”, scarce domain X
y ∈ Y sample from the original or “right”, fully observable domain Y
G, F generator networks operating in domains X and Y, respectively
D, DX(·), DY(·) discriminator networks (for domains X and Y)
p(·) data distribution
Ex∼p(x) mathematical expectation over p(x)
GX→Y, GY→X direct and the inverse I2I translations (nonlinear generator mappings)
Ladv(·, ·) adversarial loss function
Lcycle(·, ·) cycle consistency loss function
LSSL(·, ·) semi-supervised loss function
L(G, F, DX , DY) CycleGAN learning objective (with or without SSL loss)
λcycle, λSSL weights of regularization terms
P set of indices of paired samples from the original and target domains
∥ · ∥lp lp vector norms
θ(k) model parameters in training iteration k
d feature space dimensionality in Rd

T(l),x̂ feature map tensor from layer l of CNN processing translated image x̂
m(l) × n(l) spatial dimensions of feature map in l-th layer of CNN

T(l),x̂
vct vectorized feature map tensor (matrix with m(l)n(l) columns of size d)
N (µ, Σ) multivariate normal distribution with mean µ and covariance Σ
KL(·||·) Kullback–Leibler divergence between normal distributions
N (µx̂j , Σx̂j) pdf of CNN features from the translated sample x̂j

µ̂(l),x̂ ML estimate of pdf mean based on Rd CNN feature vectors from T(l),x̂
vct

Σ̂(l),x̂ sample covariance matrix based on Rd CNN feature vectors from T(l),x̂
vct

fDX pdf of CNN feature vectors of samples in the training pool of DX

M number of original image samples in the training pool of DX

Madd number of added image samples to scarce domain X through BTS
fi, gj components in GMMs f and g; gj = N (µgj , Σgj), fi = N (µ fi

, Σ fi
)

dsim(·, ·) distance function between pdfs
SSIM(·, ·) structural similarity index measure between images
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