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Abstract. Since electronic devices have become an integral part of life, there
has been a need to bring the communication between a human and a machine
closer to being as similar as possible to that between two people. As interpersonal
relationships are built on the basis of feelings and empathy, training machines to
understand emotions and to provide responses in accordance with the emotional
state of the user, i.e. human, has become an interesting area for technology develop-
ment. To gain a more comprehensive understanding of a person’s emotional state,
simultaneous utilization of different modalities such as audio, text, and video and
their further processing using a graph neural network, recently became popular
due to its suitability for tracking a conversation. However, small IoT devices com-
monly have constrained computational capabilities, memory resources and lower
power consumption, and running such a complex multimodal algorithm in real-
time may be difficult. In this research, we examine utilization of binarization and
8-bit floating point arithmetic for compressing state-of-the-art GNN-based model
COGMEN.Wedemonstrate that in the case of themultimodal emotion recognition
task, such constrainedmodels can provide significant data savings while maintain-
ing relatively high performance, as shown through experiments processing data
from the IEMOCAP dataset.

Keywords: Graph Neural Networks · Emotion Recognition · Multimodal Data ·
Compression

1 Introduction

Interpersonal relationships are significantly influenced by emotional processes, which
may play a crucial role in the formation, development, and maintenance of social bonds.
Emotions serve to establish trust, build social communities, and gain insight into the
causes of certain human reactions [1]. According to Nico Frijda, emotions are the out-
comes of a person’s engagement with the world and their perception of the environment,
which later modifies the reactions and actions they take [2]. By expressing emotions,
we obtain information about our interlocutor, learn how someone reacts, and gain the
ability to adjust our behavior accordingly.
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Emotions can be conveyed through multiple modalities, one of which is speech
communication. The emotional state of a person can be determined based on tone,
speech rate, and emphasis on certain words. Prosodic features are objective measures
because they encompass everything that makes our speech what it is: frequency, which
determines pitch; intensity; spectral envelope, which determines voice color; rhythm;
energy; spectral characteristics; andmany others [3]. For example, it has been shown that
people diagnosed with depression are more prone to using certain words [4]. Therefore,
it can be assumed that there is a set of words more commonly associated with specific
emotions. Moreover, the meaning of words changes depending on the context, and the
flow of conversation influences their choice. It is also possible to clearly assess emotions
by observing facial expressions. Some movements are spontaneous, while, for other
movements, it has been proven that the same facial muscles contract or relax when
experiencing the same emotions in different people [5]. Many of these features are not
even consciously recognized, but by observing them, one can determine which emotion
is involved.

Sometimes, it is possible to assess a person’s emotional state based on a single type
of information, but a more complete understanding is obtained by connecting multiple
sources, which may require a federated training for achieving better accuracy in the
case of sensitive applications [6]. A person can intuitively recognize feelings during
communication based on movements, facial expressions, tone, and the words used, even
if these emotions are not clearly expressed and named by their name [7].

As electronic devices have become increasingly prevalent in everyday life, people are
spending more time using them, which motivated designers to construct machines that
can understand instructions in a variety of human moods for a quality user experience.
Some of the applications may be critical, as they can involve speaker recognition or
other authentication methods, which may be influenced by emotional state of the user
[8].Automatic recognition of the emotional state of users is commonly done fromspeech,
images, video, and text as information sources [9]. By correctly recognizing emotions,
machines could adapt their responses. In the case of applications that involve synthetized
speech responses, efforts are also beingmade to ensure that the output voice of amachine
has a natural tone, that speech flows smoothly, and includes appropriate pauses in order
to further resemble natural human interaction.

Since communication can commonly be performed by processing video, audio, and
text, recent trends set a need to effectively process multimodal data to achieve high
performance. Recently, GNNs have shown excellent performance and COGMENmodel
demonstrated better results than traditional models, which are based on convolutional
or recurrent neural networks [10]. GNNs are more efficient in representing complex
relationships between data, which is significant when it is important to follow the context
and more suitable for working with different types of data.

However, achieving their effectiveness comes with the drawback of high comput-
ing complexity [11], which leads to higher energy consumption compared to traditional
machine learning methods. Processing emotional data locally at the edge reduces the
need to send sensitive information to cloud servers, which can enhance user privacy
and security [12]. This is particularly important given concerns about data breaches and
unauthorized access. As IoT devices at the edge usually have constrained power supplies
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and have limited memory, designing quantized models to handle large amounts of data
occurred as an important research area [13]. Recently, Ajay et. al proposed a binarized
model solution and FPGA-based hardware implementation for real time emotion detec-
tion at the edge for passenger anomaly state identification [14]. Another cognitive edge
computing architecture involving smartphone and edge server was proposed in [15].
These two studies are focused on emotion detection from facial expressions. However,
to the authors’ best knowledge there is a research gap in terms of analysis and further
hardware implementation of constrained multimodal models, which motivated us to
perform initial analysis and examine effectiveness of constrained GNN-based models.
Understanding a user’s emotional state provides devices with context beyond the explicit
content of their messages. This deeper insight can improve device’s ability to provide
appropriate recommendations or responses, enhancing the overall effectiveness of the
interaction.

By reducing the model size through parameter compression, the transfer, storage,
and loading of the model are accelerated, enabling the use of applications and services
that utilize these models in real time [16]. This further motivated us to examine the effec-
tiveness of applying different quantization techniques to compress state-of-the-art GNN
model [10]. Specifically, we examine the use of binarization as a technique that offers
a high compression ratio with limited precision, and floating point 8 (FP8) arithmetic,
which provides a robust solution capable of delivering quality representation across
various input data while significantly increasing computational efficiency compared to
full-precision floating point 32 (FP32) arithmetic.

The rest of the paper is organized as follows. In Sect. 2, we provide a brief theoretical
background related to the graph neural networks and compression techniques. Section 3
is dedicated to the review of the COGMEN model, which represents a state-of-the-art
solution for multimodal emotion recognition. In Sect. 4, we describe quantization tech-
niques that we applied to compress the COGMEN model, and the results are presented
in Sect. 5. Finally, advantages and drawbacks of the suggested compression approaches
are summed up in Sect. 6.

2 Theoretical Background

2.1 Graph Neural Networks

Graph neural networks are a class of neural network architectures designed to operate
with data structured as graphs. Optimal values of the coefficients are determined by
perceptron learning and represent the contribution of the inputs. The drawback is that
small changes in the inputs can cause large changes in the output (from zero to one and
vice versa) even though it is desirable for the output to change in accordance with the
magnitude of the changes in the input. To address this, nonlinearity is applied (most
commonly, but not necessarily) and the output of the neuron becomes an activation
function.

A graph represents connections between a group of entities called nodes. Edges
or links connect the nodes and describe their relationships [17]. Graphs are abstract
structures of a nonlinear nature, making them very suitable for representing complex
relationships between data, while neural networks are used to identify patterns. The
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connectivity matrix represents the interconnections between the nodes of a graph and it
can be described using Eq. (1). A graph G with n nodes is represented by a connectivity
matrix A of dimensions n × n, where a matrix element аij indicates whether there is an
edge going from node i to node j, and аii represents an edge that goes from and to the
same node i. If there is an edge going from node i to node j, then aij = 1, and the other
elements are zeros.

aij =
{
1 if there is an edge from i to j
0 if no edge exists from i to j

}
(1)

In the context of conversation, especially context tracking, a graph with directed
edges is used because it is important to follow the influence of utterances on each other.
The basic idea of the GNN is to model each node of the graph based on the connections
with neighboring nodes, ensuring that complex representations of nodes and the entire
graph are learned [17]. This is achieved by iteratively updating the state or features of a
node based on information from its neighborhood. Additionally, each edge can have its
own attributes. First, information from the surrounding nodes is gathered and combined.
This collected data is used to update the state of the node through a function that includes
a neural network. The current features of the node are combinedwith information from its
neighbors. As mentioned earlier, the update process is repeated, allowing the properties
of distant nodes to influence a node since the information paths traverse the graph
multiple times. Training the model involves finding the optimal parameters that allow
the network to adjust the weights and achieve the best results for a given problem.

In recent emotion recognition tasks, context is a new feature that is being observed
[18], usually by considering text extracted from speech. In this approach, structural con-
nections in the text are observed as features alongside those obtained from audio signals.
Two approaches are described. In the first one, attention is given to the speaker’s tendency
to maintain their emotional state and not succumb to the influence of the environment or
other sentences. In the second approach, the focus is on the influence of one speaker on
another, and this experience is unique to each person. To better illustrate this complex
contextual dependency, the edges of the graph are suitable for their description, while
the nodes represent sentences. The advantage of such setup is that, besides the sequential
approach where sentences are viewed in isolation from the conversation, it also takes
into account the context, considering the influence of each sentence on the conversation.

Intuitively, we form opinions about the interlocutor and their emotional status during
a conversation based on what we see, such as facial expressions, and what we hear. If it is
a written communication, then we rely on what is written. To take all these aspects into
account, a heterogeneous graph [19] is used because its nodes contain data of different
modalities. In the work [20], the heterogeneous nodes consist of: sentences providing
information about the dialogue history, facial expressions, the speaker’s personality type,
and the emotional flow during the dialogue. To prove the efficiency of this algorithm,
one type of heterogeneous node was removed at a time, showing that the absence of each
modality differently affects the overall result but always reduces effectiveness. Another
highlighted advantage is that the model learns to automatically recognize emotions and
display them accordingly, which, combined with diverse data, would contribute to the
development of conversation systems that pay attention to emotions.
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2.2 Compression Techniques

The development of machine learning algorithms, especially neural networks, has led
to the ability to solve complex challenges. More complex tasks require more layers and
parameters. However, large models in terms of the number of parameters are impractical
for real-time applications due to limited memory resources and constrained hardware
components, e.g., in mobile phones [13]. It has also been shown that these models are
over-parameterized, meaning that such a large number of parameters is actually not nec-
essary [21]. For convolutional neural networks and Long Short-Term Memory (LSTM)
networks, it has been found that sparsemodels, onwhichmodel pruning has been applied
[13], perform better than the initial smaller and denser models, achieving compression
by a factor of 10 in terms of non-zero elements with minimal losses in accuracy. Thus,
the mentioned study showed that by applying a defined criterion, model pruning is per-
formed, removing a certain number of parameters, making themodel sparser and thereby
reducing memory and hardware requirements, while the accuracy does not change sig-
nificantly. Besides sparse models, statistical methods of data compression are widely
used. They analyze the input data to determine redundant information and then repre-
sents input data with a smaller number of bits. In this paper, two quantization methods
are applied and will be explained in the following chapters. We observe binarization
technique and floating point-8 arithmetic (FP8), and compare their performance with
the one achieved using a full precision 32-bit data.

3 COGMEN Methodology

As a core architecture for development a constrained model we have chosen the COG-
MEN, which represents a state-of-the-art GNN-based solution for multimodal emotion
recognition task [10]. In this section, we provide a short introduction to this existing
methodology, before describing steps related to the model compression that we perform
and analyze in this paper. The COGMEN supports audio, video, and text modalities that
complement each other and provide a more comprehensive inference comparing to the
unimodal or other multimodal solutions, available in the literature. What sets COGMEN
apart from others on similar or the same topic is that it takes into account the influence
of conversation context (global information) and local information, i.e., the interdepen-
dence of interlocutors, as well as the dependence on the individual speaker on temporally
close sentences. The goal in the experiment was to recognize the emotion expressed in
one sentence by the speaker.

To recognize the context (global information) and its impact on each individual
sentence (sample), a transformer encoder is used. This approach achieves a better under-
standing of context and word meaning. Without any positional encoding, the trans-
former encoder effectively uses the entire context to create distributed representations,
describing each sample with multiple features.

Regarding local information, the emotion expressed in one sentence is often influ-
enced by surrounding, neighboring sentences,making it necessary to determine the influ-
ence between interlocutors and the influence of the interlocutor on themselves. For these
purposes, a graph was developed where each sentence represents a node, and directed
edges represent different connections, with the order of sentences being important. It is
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crucial to note that one sentence consists of audio, video, and textual representations,
making the node multimodal in nature. There is a distinction between the directed con-
nection between sentences spoken by one speaker and the directed connection between
sentences coming from multiple speakers.

3.1 Architecture of the Model

The input sentences first encounter the context extractor. The concatenated features of
all three modalities (video, audio, and text) are used as input for each sentence of the
dialogue, and the context extractor uses a transformer encoder to extract the context. The
main component of the transformer encoder is the attention mechanism, which allows
the decoder to utilize the most relevant parts of the input sequences by assigning weight
coefficients to the encoded input vectors, with the highest coefficients attributed to the
most important samples. Three main components are used: queries, keys, and values.
The final layer of the encoder is a feed-forward network. In the end, a feature vector is
obtained for each sentence.

Based on the features obtained from the encoder, a graph is created that identifies
connections between sentences in the dialogue. Each graph node is represented by a
sentence in all three modalities, connected by directed edges. Two types of edges can
be distinguished: edges connecting sentences spoken by the same speaker, and edges
connecting sentences of different speakers. Additionally, future and past relationships
of each sentence are tracked, meaning it is known which sentences preceded and which
followed each sentence.

The following part of the COGMEN architecture is the Relational Graph Convolu-
tional Network (RGCN) [22]. Its role is to gather transformations specific to the relation-
ships among neighboring nodes, which depend on the type and direction of the edges,
all through a normalized sum. In the work of interest, this network model observes the
dependency of connected sentences on the speaker andmultiple interlocutors. TheGraph
Neural Network in this work has 52 layers, including layers with weights and layers with
biases. It has 8 layers that contain over a million parameters.

To extract rich representations from the node features, a Graph Transformer [23] is
used. It adapts the attention mechanism to graph learning by considering nodes con-
nected through edges. At the very end of the entire model, there is an emotion classifier
consisting of a single linear layer.

3.2 COGMEN Performance

The performance of the model was examined on two datasets in [10]. IEMOCAP (The
Interactive Emotional Dyadic Motion Capture) is a multimodal dataset for emotion
recognition where each sentence is labeled with one of 6 emotions: anger, excitement,
sadness, happiness, frustration, and neutral feeling [24]. It consists of recorded video
dialogues of actors who were asked to act out certain emotions. MOSEI (Multimodal
Opinion Sentiment and Emotion Intensity) is another widely used multimodal dataset
with 6 emotions: happiness, sadness, disgust, fear, surprise, and anger [25]. As the name
suggests, it involves affective emotions expressed in stressful or emotionally challenging
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situations. It consists of video and corresponding audio recordings, with each sample
labeled with an emotion.

For evaluating the compressed COGMENmodel, we have picked IEMOCAP dataset
(4-way settings). Such experiment was created in [10], to demonstrate the importance
of context. It was created as a sub-dataset by splitting each dialogue into n utterances.
It was demonstrated that with the decrease of the number of utterances in the dialogue,
there is a certain performance drop. Here, we present detailed results for processing all
utterances from each dialogue (the best case) and all three modalities (i.e., audio, video,
and text) in Table 1. The results are achieved by training an unconstrained model using
the code from the official GitHub repository of COGMEN.

Table 1. Performance of the COGMEN model.

Precision Recall F1-score

Macro-averaged value 82.39% 81.24% 81.66%

Weighted average 82.22% 81.97% 81.96%

Average accuracy 81.97%

4 Compressed COGMEN Model

Deployment of complex neural network architectures on a resource constrained device,
such as mobile platforms, Raspberry Pi and other embedded devices, could heavily
depend on the design of constrained models, which commonly involve model quanti-
zation. As an extension to the existing work, we perform post-training quantization of
the COGMEN model with the goal of saving memory space. We trained the model by
using the code from the official COGMEN repositorium. The main objective is to reduce
the size of the model by reducing the precision of parameters, primarily weights, which
would lead to faster execution, thereby reducing energy consumption as well. We have
decided to analyze two popular approaches – binarization as the approachwhich provides
large compression and floating point 8, as an approach which attracts many constrained
applications due to the fact that it can provide a 4 times data saving, commonly with
only limited drop of other performances. In the next two sections, these approaches are
described in detail.

4.1 Binary Quantization

Quantization involves the procedure ofmapping input values, which theoretically belong
to the infinite set, to an output set with a specific number of values. In this paper, within
the quantization process we process the weight coefficients of the network layers. Binary
quantization alters the input value using only one bit. Therefore, the complexity of the
original data is reduced by converting values into one of two possible values. In this
paper, following the methodology presented in [26], we use deterministic function as
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the most common approach. It is defined using Eq. (2), where x represents a real input
value, while xb is a binarized sample:

xb = sign(x) =
{+1 x ≥ 0

−1 x < 0

}
(2)

One of the challenges of binary quantization, perhaps greater than with other quan-
tization methods, is balancing between data compression and quality preservation. Con-
verting continuous or wide-range values into just two possibilities can lead to the loss
of crucial details and information, which in some situations may be unacceptable.

4.2 The 8-bit Floating Point Quantization

Floating point (FP) is the most commonly used method of quantization for representing
real numbers in computing. The rules of FP arithmetic are defined by the IEEE 754
standard [27]. According to it, there are three basic binary encodings: with 32 bits, with
64 bits, and with 128 bits. Full precision refers to the 32-bit format, while for the 64-bit
and 128-bit formats, it is double and quadruple precision, respectively. The 8-bit FP, also
referred sometimes as the minifloat, can be designed following the instructions from the
IEEE 754 standard.

As the name suggests, precision is significantly reduced, and such approach is not
always suitable for the general-purpose applications, but rather for the special purposes.
The drawback of this method is that the range of values representable in FP8 format is
limited, which can be problematic when dealing with very small or very large values
because using only 8 bits to represent them can lead to loss of accuracy.

Here, an infinite set of input values is represented by a finite set, so complete preser-
vation of arithmetic properties is not possible, and compromises must be made between
speed, accuracy, memory saving, implementation, and ease of use. Floating Point num-
bers consist of three components: the sign bit, exponent, andmantissa (fraction). The sign
bit provides information about whether the number is positive or negative, the exponent
determines the scale, and the mantissa represents the precision or significant digits. We
examine the effects of utilizing the format (s, e, m) = (1, 5, 2), where s, e, and m denote
the number of bits allocated for encoding the sign, exponent, and mantissa, respectively.
If we consider the input sample x1, the sign s, and biased exponent Eb are determined
by Eqs. (3) and (4), respectively:

s =
{
0 x1 ≥ 0
1 x1 < 0

}
(3)

Eb = ⌊
log2(|x1|)

⌋
. (4)

If Eb > 2e−1 − 1, then the value of Eb is set as Eb = 2e−1 − 1, and if Eb < −2e−1,
then Eb = −2e−1.

The mantissa M is computed as:

M = round

(
2m

( |x1|
2Eb

− 1

))
. (5)
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Also, for M > 2m − 1, it holds that M = 2m − 1 and for M < 0, it is M = 0. The
output value in FP format is obtained using Eq. (6):

x = (−1)s2Eb
(
1 + M

2m

)
. (6)

In the rest of the paper, we perform two experiments as an extension to the existing
COGMENmethodology. Firstly, we perform binary quantization and FP8 only to layers
with over a million parameters, of which there are 8. This way, we explore the quanti-
zation influence on particular layers. In the second experiment, we apply quantization
to all layers, and we analyze its’ impact on the model’s prediction results.

5 Experimental Results and Discussion

In this section, we provide experimental results obtained by applying compression tech-
niques described in Sects. 4.1 and 4.2 to the COGMEN model, and perform a compar-
ison with the performance of the full-precision model. The performance obtained after
applying binarization approach from [26] is shown in Table 2. By comparing the results
previously shown in Table 1, with those in Table 2 below, a significant drop in model
performance can be noticed when binary quantization is applied. It can be noticed that
the performance drop is significantly larger in the case of compressing the whole model,
comparing to the case of compressing only layers with over million parameters. Previ-
ously, the effects of binarization on the performance of GNNs were studied in papers
[28, 29]. In the study [28] it wasmentioned that there is a slight decrease in accuracy. The
impact of quantization onmodel accuracy is presented in the study [29], where it is stated
that the model’s accuracy is lower, but insignificantly so, as it is comparable to models
on which quantization was not applied. However, a binarization approach, which is used
here, was not applied in the study. A more detailed analysis of quantization on the gen-
eral behavior of the model is given in the study [30]. It is concluded that a non-uniform
distribution of data on which quantization is applied affects the performance decline,
which may be the cause of such weak results because the histograms show that the value
distribution does not match the Laplace distribution around zero, and in that case, binary
quantization would have been a suitablemethod for compression. However, the expected
decrease in accuracy was not as significant as that shown in Table 2. Therefore, based on
the table, the model’s performances are much weaker compared to the original, which
was not the case in some earlier experiments that involved GNNswhere binarization was
applied. Additionally, it’s possible that the combination of regular graph neural networks
and deterministic binary functions is not predisposed to achieving satisfactory results.

This model architecture is much better suited to the FP8 method for achieving the
high-quality performance, as it can be seen in Table 3. The results are even slightly
better compared to the results in Table 1 in terms of recall and F1-score, while average
accuracy value remains the same.

The reason for such close performance is that with the FP8method, parameter values
are rounded to the nearest quantization levels that are only slightly different from the
original values, which is similar behavior as in the model training where parameter
values also change in small steps. When accuracy improves slightly, it means that,
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Table 2. System performance - binary quantization.

Layers Over million parameters All parameters

Precision Recall F1-score Precision Recall F1-score

Macro-averaged value 49.42% 36.85% 35.25% 38.23% 32.32% 29.03%

Weighted average 48.13% 44.75% 35.25% 39.94% 41.57% 34.64%

Average accuracy 44.75% 41.57%

Table 3. System performance - FP8.

Layers Over million parameters All parameters

Precision Recall F1-score Precision Recall F1-score

Macro-averaged value 80.90% 81.93% 81.39% 80.99% 82.58% 81.71%

Weighted average 81.86% 81.76% 81.78% 82.15% 81.97% 82.00%

Average accuracy 81.76% 81.97%

hypothetically, further learning of the model has been applied, as parameter values
are adjusted by small amounts corresponding to the learning step, leading to model
improvement as seen in [28]. In [30], it was found that using advanced quantization
methods like FP8 can lead to accuracy improvements. Also, quantization of biases is
suggested to be avoided [30] as they do not require significant storage resources, which
is an approach we follow. In the end, it could be noticed that there are not significant
performance differences between the cases of compressing the whole model and only
several layers with over million parameters. Thus, we can conclude that utilization of
the fully compressed model is desirable, due to the larger compression. Based on the
above, FP8 has proven to be a suitable method for applying compression to the layers of
the graph neural network in this case, as it preserves the results while contributing to the
4 times memory space savings. In Table 4, we present model size of the unconstrained
COGMEN model, trained for the 4-way IEMOCAP emotion classification task, and
sizes of fully quantized models.

Table 4. Model size.

Precision Model size (MB)

Full-precision 103.1

FP8 25.8

Binarization 3.22
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6 Summary and Conclusions

In this paper, we have examined the influence of the binarization and floating point 8
quantization for compressing GNN-based COGMEN model for multimodal emotion
recognition. In the case of the FP8 arithmetic, we have demonstrated that the results are
slightly improved and closely approximate to those of the non-quantized model while
achieving 4 times memory savings in the case of compressing the whole model. Perfor-
mance was also tested in the case of applying deterministic binary quantization, which
lead to a significant drop in performance, inappropriate for practical implementation.
In the future, we will intend to analyze more advanced binarization techniques, such as
stochastic binary quantization, as well as a 2-bit scalar quantization in order to examine
in details a potential of designing a heavily constrained model.
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3. Delić, V., et al.: Speech technology progress based on new machine learning paradigm.

Comput. Intell. Neurosci. 2019, 1–19 (2019)
4. Yang, C., et al.: Emotion-dependent language featuring depression. J. Behav. Therapy Exp.

Psych. 81, 101883 (2023)
5. Mahlke, S.,Minge,M.: Emotions andEMGmeasures of facialmuscles in interactive contexts.

Cogn. Emot. 6, 169–200 (2006)
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